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BAB II KAJIAN TEORI 

A. Studi Pustaka 

Dalam melakukan penelitian skripsi, beberapa jurnal yang digunakan sebagai 

studi literatur dan memiliki keterkaitan terhadap penelitian yang akan dilakukan. 

Berikut adalah beberapa penelitian yang terkait dengan penelitian ini. 

Tabel 1. Penelitian terkait 

No Peneliti Keterangan Penelitian 

1.  Mizan 

Ahmad 

(2023) 

Judul: Dual kothe-teoplitz untuk ruang barisan vektor. 

Metode: Studi literatur. 

Hasil Penelitian: Diperoleh kelengkapan masing-masing kelas dan 

hubungan antar ruang. Dikonstruksikan dual Kothe-Toeplitz untuk 𝑐𝑛 

dan 𝑙∞
𝑛  [6]. 

2.  Mizan 

Ahmad 

dan Riski 

Aspriyani 

(2022) 

Judul: Ruang barisan selisih diperumum tipe cesaro pada ruang 

bernorma-n. 

Metode: Studi literatur. 

Hasil Penelitian: Diperoleh kelengkapan masing-masing kelas dan 

hubungan antar ruang. Dikontruksikan dual Kothe-Toeplitz dari beberapa 

ruang barisan selisih diperumum Cesaro pada ruang bernorma-n [7]. 

3.  Mizan 

Ahmad 

(2022) 

Judul: Beberapa kelas ruang barisan selisih diperumum tipe casero.  

Metode: Studi literatur. 

Hasil Penelitian: Diperoleh kelengkapan masing-masing kelas dan 

hubungan antar kelas. Dikonstruksikan dual Kothe-Toeplitz untuk 

𝑙∞(∆𝑔
𝑚),𝐶∞(∆𝑔

𝑚),  dan 𝑂∞(∆𝑔
𝑚)  [8]. 

4.  Hery 

Suharna 

(2013) 

Judul: Ruang barisan selisih 𝑐0(∆𝑚
 ), 𝑐 (∆𝑚

 ), 𝑙∞ (∆𝑚
 ) , dan 𝑙𝑝 (∆𝑚

 ). 

Metode: Studi literatur. 

Hasil Penelitian : Ruang barisan 𝑐0(∆𝑚
 ), 𝑐 (∆𝑚

 ), 𝑙∞ (∆𝑚
 ) , dan 𝑙𝑝 (∆𝑚 ), ∀ 𝑚 ∈

 ℕ adalah ruang BK [5].  

5.  Mikail 

ET dan 

Rifat 

Colak 

(1995) 

Judul: On some generalized difference sequence space. 

Metode: Studi literatur. 

Hasil Penelitian: The result sequence space 𝑙∞(∆
𝑚), 𝑐 (∆

𝑚), 

and 𝑐0(∆
𝑚),𝑚 ∈ ℕ. where for instance 𝑙∞(∆

𝑚) = {𝑥 = (𝑥𝑘): (∆
𝑚𝑥𝑘) ∈ 𝑙∞}, give 

some topological properties, inclusion relation of these space and 

compute their continuous and kothe-toeplitz duals [4].  

6.  H. 

KIZMAZ 

(1981) 

Judul: On certain sequence space.  

Metode: Studi literatur. 

Hasil Penelitian: Obtain the completeness of each class and the 

relationship between classes. Obtain some results useful in the 

characterization of certain matrix maps [3]. 

Untuk merepresentasikan ide, informasi, dan konsep dari penelitian atau jurnal 

yang terkait dapat disajikan dalam bentuk mind map sebagai berikut : 
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Gambar 1. Mind map.  

 

 

B. Landasan Teori 

1. Ruang Vektor 

 Berikut ini akan dibahas sifat aljabar dari ℝ, definisi ruang vektor, definisi 

subruang, definisi supremum, dan teorema ketidaksamaan segitiga mutlak. 

Definisi 1.1 Sifat Aljabar dari ℝ 

Himpunan semua bilangan real ℝ terhadap operasi penjumlahan dan perkalian 

memenuhi beberapa sifat – sifat sebagai berikut [11], (∀ 𝑎, 𝑏, 𝑐 ∈ ℝ) berlaku: 

1.   𝑎 + 𝑏 ∈ ℝ.       (Sifat tertutup (+)) 

2. (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) ∈ ℝ.   (Sifat assosiatif (+)) 

3. 𝑎 + 0 = 0 + 𝑎 = 𝑎.      (Sifat identitas (+)) 

4. 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0.     (Sifat invers (+)) 

5. 𝑎 + 𝑏 = 𝑏 + 𝑎.       (Sifat komutatif (+)) 

6. 𝑎𝑏 ∈ ℝ.         (Sifat tertutup (.)) 

7. (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) ∈ ℝ.      (Sifat assosiatif (.)) 

8. (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐.      (Sifat distributif (.)) 

 Sifat aljabar dari bilangan real, seperti penjumlahan dan perkalian skalar, 

membentuk dasar dari struktur ruang vektor. Berikut definisi dari ruang vektor. 

Definisi 1.2 Diberikan 𝒙, 𝒚, 𝒛 ∈ 𝑉 dan skalar 𝛼, 𝛽 ∈  ℝ. V dikatakan ruang 

vektor jika memenuhi aksioma berikut [12]: 

1. 𝒙 +  𝒚 =  𝒚 +  𝒙. 

2. (𝒙 +  𝒚)  +  𝒛 = 𝒙 + (𝒚 +  𝒛). 

3. ada 𝟎 ∈  𝑉 sehingga 𝒙 +  𝟎 =  𝒙. 

4. ∀ 𝒙 ∈ 𝑉 , ada −𝒙 ∈  𝑋 sehingga 𝒙 + (−𝒙) =  𝟎. 

5. 1𝒙 =  𝒙. 

6. 𝛼 (𝒙 +  𝒚)  =  𝛼𝒙 +  𝛼𝒚. 

7. (𝛼 +  𝛽) 𝒙 =  𝛼𝒙 +  𝛽𝒙. 

8. 𝛼(𝛽𝒙) = (𝛼 . 𝛽) 𝒙. 

Beberapa kelas 
ruang barisan 

selisih 
diperumum tipe 
casero (Mizan 
Ahmad, 2022) 

 

On certain 
sequence 
space. (H. 

Kizmaz, 1981) 

𝒄𝟎, 𝒄 , & 𝒍∞. 

On some 
generalized 
difference 
sequence 

space. (Mikail 
Et, 1995) 

 Ruang barisan  

Ruang barisan vektor 
Ruang barisan vektor 

𝑙∞,  𝑐 
𝑛 ,  dan 𝑐 

𝑛
0 

𝑛 . 

Dual kothe teoplitz untuk 
ruang barisan.  

(Mizan Ahmad, 2023) 



5 

 

Contoh : Diberikan 𝜔(ℝ𝑛) = {𝑥 = (𝑥𝑘) ∶  𝑥𝑘 ∈ ℝ
𝑛 , ∀𝑘 ∈ ℕ}. Buktikan 𝜔(ℝ𝑛) 

merupakan ruang vektor. 

Bukti. Diambil sebarang 𝒙, 𝒚, 𝒛 ∈  𝜔(ℝ𝑛) dan 𝛼, 𝛽 ∈ ℝ. ∀ 𝑘 ∈ ℕ maka 

1. 𝒙 + 𝒚 = (𝑥𝑘) + (𝑦𝑘) = (𝑥𝑘 + 𝑦𝑘) = (𝑦𝑘 + 𝑥𝑘) = (𝑦𝑘) + (𝑥𝑘) =  𝒚 +  𝒙. 

2. (𝒙 +  𝒚)  +  𝒛 = (𝑥𝑘 + 𝑦𝑘) + (𝑧𝑘) = (𝑥𝑘 + 𝑦𝑘 + 𝑧𝑘) = (𝑥𝑘) + (𝑦𝑘 + 𝑧𝑘) = 𝒙 + (𝒚 +  𝒛).  

3. ∃ 𝟎 = ((

0

0

⋮
0

) ,(

0

0

⋮
0

) , …)

 

∈ 𝜔(ℝ𝑛) ∋ 𝒙 + 𝟎 = (𝑥𝑘) + 𝟎 = (𝑥𝑘 + 𝟎) = (𝑥𝑘) =  𝒙. 

4. ∀ 𝒙 ∈ 𝜔(ℝ𝑛), ∃ − 𝒙 ∈  𝜔(ℝ𝑛), 

sehingga 𝒙 + (−𝒙) = (𝑥𝑘) + (−𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘) =  0. 

5. 1. 𝒙 = 1. (𝑥𝑘) = (𝑥𝑘) =  𝒙. 

6. 𝛼 (𝒙 +  𝒚)  = 𝛼((𝑥𝑘) + (𝑦𝑘)) = 𝛼(𝑥𝑘) + 𝛼(𝑦𝑘) = 𝛼𝒙 +  𝛼𝒚. 

7. (𝛼 +  𝛽) 𝒙 = (𝛼 +  𝛽) (𝑥𝑘) = 𝛼(𝑥𝑘) +  𝛽(𝑥𝑘)  𝛼𝒙 +  𝛽𝒙. 

8.  𝛼(𝛽𝒙) = 𝛼(𝛽(𝑥𝑘)) = (𝛼𝛽(𝑥𝑘)) = (𝛼𝛽)(𝑥𝑘) = (𝛼 . 𝛽) 𝒙. 

Terbukti 𝜔(ℝ𝑛) merupakan ruang vektor.         ∎ 

 Dalam koleksi barisan vektor 𝜔(ℝ𝑛), beberapa ruang barisan vektor menjadi 

bagian dari 𝜔(ℝ𝑛). Berikut merupakan definisi subruang. 

Definisi 1.3 S disebut subruang dari V, jika S adalah subset tidak kosong dari ruang 

vektor V dan S memenuhi kondisi berikut [12] : 

1. 𝛼𝒙 ∈  𝑆.  

2. 𝒙 +  𝒚 ∈  𝑆, ∀ 𝒙, 𝒚 ∈ 𝑆 dan 𝛼 ∈  ℝ. 

Contoh : Diberikan 𝑊 = {(𝑎, 0)𝑇  | 𝑎 ∈ ℝ}. Buktikan W subruang dari ℝ2. 

Bukti. Diambil 𝑐 ∈ ℝ dan 𝒗 = (𝑎, 0)𝑇 , 𝒘 = (𝑏, 0)𝑇 ∈ 𝑊, ∀𝑎, 𝑏 ∈ ℝ, berlaku:  

1. 𝑐𝒗 = 𝑐(𝑎, 0)𝑇 = (𝑐𝑎, 0)𝑇 ∈ 𝑊.  

2. 𝒗 + 𝒘 = (𝑎, 0)𝑇 + (𝑏, 0)𝑇 = (𝑎 + 𝑏, 0)𝑇 ∈ 𝑊.  

Jadi terbukti W subruang dari ℝ2.          ∎ 

 Supremum dari suatu himpunan bilangan real adalah batas atas terkecil yang 

masih lebih besar atau sama dengan semua elemen dalam himpunan tersebut. 

Definisi 1.4 Diberikan 𝑢 = sup 𝑆 dari 𝑆 ⊂ ℝ jika dan hanya jika memenuhi 2 

kondisi [11] : 

1. 𝑢 ≥ 𝑠, ∀ 𝑠 ∈ 𝑆. 

2. Jika 𝑣 < 𝑢, 𝑣 ∈ ℝ,𝑚𝑎𝑘𝑎  ∃ 𝑠′ ∈ 𝑆, ∋ 𝑣 < 𝑠′. 

Contoh : Diberikan 𝐵 = (
1

𝑛
∶ 𝑛 ∈ ℕ). Buktikan bahwa sup 𝐵 = 1. 
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Bukti. Andaikan u ≠ 1. Pada kasus u < 1. Diambil sebarang u < 1, terdapat 1 ∈

𝐵 maka u bukan batas atas dari B. Pada kasus u > 1. Diambil sebarang u > 1, 

karena (
1

𝑛
) ≤ 1 maka u bukan batas terkecil B. Pengandaian tersebut menimbulkan 

kontradiksi. Dapat disimpulkan bahwa sup 𝐵 = 1.        ∎ 

Berdasarkan definisi dan contoh diatas, selanjutnya akan dibahas sifat supremum.   

Definisi 1.5 Sifat Supremum Diberikan A dan B masing masing himpunan bagian 

tak kosong di dalam ℝ, dengan 𝐴 + 𝐵 = {𝑎 + 𝑏 |𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵) berlaku [11] : 

sup{𝐴 + 𝐵} = sup𝐴 + sup𝐵. 

Bukti. Akan ditunjukan sup{𝐴 + 𝐵} ≤ sup 𝐴 + sup 𝐵. Diberikan 𝑎 + 𝑏 ∈ 𝐴 + 𝐵.  

Berdasarkan sifat supremum maka 𝑎 ≤ sup𝐴 dan 𝑏 ≤ sup 𝐵 berlaku : 

𝑎 + 𝑏 ≤ sup𝐴 + sup𝐵 maka sup{𝐴 + 𝐵} ≤ sup𝐴 + sup𝐵. 

Akan ditunjukan sup𝐴 + sup𝐵 ≤ sup{𝐴 + 𝐵}. Diberikan 𝑎 ∈ 𝐴, maka untuk 

setiap 𝑏 ∈ 𝐵 berlaku 𝑎 + 𝑏 ≤ sup{𝐴 + 𝐵} maka 𝑎 ≤ sup{𝐴 + 𝐵} − 𝑏. 

sup{𝐴 + 𝐵} − 𝑏 adalah batas atas dari 𝐴, maka sup𝐴 ≤ sup{𝐴 + 𝐵} − 𝑏 maka 

𝑏 ≤ sup{𝐴 + 𝐵} − sup 𝐴. Jadi sup{𝐴 + 𝐵} − sup𝐴 adalah batas atas dari B, maka 

sup𝐵 ≤ sup{𝐴 + 𝐵} − sup𝐴 dengan demikian sup𝐴 + sup𝐵 ≤ sup{𝐴 + 𝐵}. 

Diperoleh sup{𝐴 + 𝐵} = sup𝐴 + sup𝐵.          ∎ 

 Ketaksamaan segitiga menyatakan bahwa panjang satu sisi segitiga tidak 

pernah lebih besar dari jumlah panjang dua sisi lainnya. Berdasarkan hal tersebut 

diperoleh teorema berikut. 

Teorema 1.6 Jika 𝑎, 𝑏 ∈ ℝ maka |𝑎 − 𝑏| ≤ |𝑎| + |𝑏|  [11]. 

Bukti. Berdasarkan ketaksamaan segitiga mutlak berlaku |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|. 

Subtitusi 𝑏 = −𝑏, diperoleh |𝑎 − 𝑏| ≤ |𝑎| + |𝑏|.             

Jadi terbukti |𝑎 − 𝑏| ≤ |𝑎| + |𝑏|.          ∎ 

2. Barisan Bilangan Real 

 Berikut akan dibahas mengenai definisi barisan bilangan real, definisi barisan 

konvergen, definisi barisan divergen, kriteria divergen, deinisi barisan bagian, 

definisi barisan Cauchy, dan definisi barisan terbatas. 

Definisi 2.1 Barisan bilangan real adalah suatu fungsi dengan domain himpunan 

semua bilangan asli ℕ dengan range termuat di dalam ℝ [11].  

Contoh : 𝑦 = (2𝑘)𝑘=1
∞ = (2,4,6,… ). 
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Definisi 2.2 Diberikan 𝑋 = (𝑥𝑘) dikatakan konvergen ke 𝐿 (𝑥𝑘 → 𝐿) atau 𝐿 adalah 

limit dari (𝑥𝑘) jika untuk setiap 𝜀 > 0, ada 𝑛0 ∈ ℕ sedemikian sehingga untuk 

setiap 𝑘 > 𝑛0 berlaku  |𝑥𝑘 − 𝐿| < 𝜀 [11]. 

Contoh : barisan  (𝑥𝑘) = ((1)
𝑘), 𝑘 ∈ ℕ. Bukti 𝑥𝑘 → 1.  

Bukti. Diambil 𝜀 > 0.  ∃ 𝑛0 ∈ ℕ, ∋ ∀ 𝑘 ≥ 𝑛0 berlaku |𝑥𝑘 − 1| = |1 − 1| = 0 < 𝜀. 

Jadi terbukti 𝑥𝑘 → 1.             ∎ 

 Jika suatu barisan konvergen ke suatu limit, maka setiap subbarisan yang 

diambil dari barisan tersebut juga akan konvergen ke limit yang sama. Berikut 

merupakan definisi dari barisan bagian (subbarisan).  

Definisi 2.3 Diberikan (𝑥𝑘) barisan bilangan real  dan 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ⋯ 

barisan bilangan real yang naik tegas (strictly increasing). Maka barisan (𝑥𝑟𝑘) 

ditulis (𝑥𝑟1 , 𝑥𝑟2 , … , 𝑥𝑟𝑘 , … ) disebut barisan bagian dari (𝑥𝑘) [13]. 

Contoh : Diberikan barisan (𝑥𝑘) = (1,2,3,… ). Contoh barisan bagiannya adalah 

(𝑥𝑘1) = (1,3,5,… ), (𝑥𝑘2) = (2,4,6,… ). 

 Dalam beberapa kasus, subbarisan dari barisan yang divergen dapat memiliki 

sifat konvergen jika dipilih dengan tepat. Berikut definisi kriteria divergen. 

Definisi 2.4 Kriteria Divergen X dikatakan divergen jika barisan bilangan real 

𝑋 = (𝑥𝑘) memiliki salah satu dari sifat berikut [13]. 

i. X  memiliki 2 subspace yang konvergen 𝑋′ = (𝑥𝑟𝑘) dan 𝑋′′ = (𝑥𝑛𝑘)  yang 

limitnya tidak sama. 

ii. X tak terbatas. 

Contoh : Barisan (𝑥𝑘) = ((−1)
𝑘) adalah divergen. 

Bukti. Dibentuk subsequence (𝑥𝑛𝑘) = (1,1,… ) dan (𝑥𝑚𝑘) = (−1, −1,… ).  

𝑥𝑛𝑘 → 1 sebab, diberikan 𝜀 > 0. ∃ 𝑛1 ∈ ℕ ∋ ∀ 𝑛𝑘 ≥ 𝑛1 berlaku  

|𝑥𝑛𝑘 − 1| = |1 − 1| = 0 < 𝜀. 

𝑥𝑚𝑘 → −1 sebab, diambil 𝜀 > 0. ∃ 𝑚1 ∈ ℕ ∋ ∀ 𝑚𝑘 ≥ 𝑚1 berlaku  

|𝑥𝑚𝑘 + 1| = |−1 + 1| = 0 < 𝜀. 

Berdasarkan 2.4 (i) disimpulkan (𝑥𝑘) divergen.       ∎ 

 Jika suatu barisan adalah Cauchy, maka secara umum ia cenderung konvergen 

dalam ruang metrik lengkap, sedangkan barisan yang divergen tidak memenuhi 

sifat Cauchy karena elemen-elemennya tidak semakin dekat satu sama lain seiring 

bertambahnya indeks. Berikut merupakan definisi barisan Cauchy. 
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Definisi 2.5 Diberikan 𝑋 = (𝑥𝑘) dikatakan barisan Cauchy jika untuk setiap 𝜀 > 0 

ada 𝑛0 ∈ ℕ sedemikian sehingga untuk setiap 𝑘, 𝑙 > 𝑛0, berlaku |𝑥𝑘 − 𝑥𝑙| < 𝜀 [1]. 

Contoh : Barisan (𝑥𝑛) = (
1

𝑛
∶ 𝑘 ∈ ℕ) merupakan barisan Cauchy. 

Bukti. Diambil sebarang 𝜀 > 0. Menurut sifat Archimedes, ∃ 𝑛0 ∈ ℕ ∋ ∀
1

𝑛0
<
𝜀

2
. 

∀ 𝑚, 𝑛 > 𝑛0 berlaku |𝑥𝑚 − 𝑥𝑛| = |
1

𝑚
−
1

𝑛
| ≤ |

1

𝑚
| + |

1

𝑛
| ≤

1

𝑛0
+

1

𝑛0
<
𝜀

2
+
𝜀

2
= 𝜀.  

Jadi terbukti (𝑥𝑛) merupakan barisan Cauchy.        ∎ 

 Berdasarkan definsi dari barisan konvergen dan barisan Cauchy diperoleh 

teorema berikut. 

Teorema 2.6 Barisan konvergen jika dan hanya jika barisan Cauchy. 

Bukti. (⇒)Misalkan (𝑥𝑘) barisan Cauchy akan ditunjukan (𝑥𝑘) barisan konvergen. 

Karena (𝑥𝑘) konvergen maka ∀
𝜀

2
> 0, ∃ 𝑛0 ∈ ℕ,∋ ∀ 𝑚, 𝑛 ≥  𝑛0 berlaku  

|𝑥𝑚 − 𝐿| <
𝜀

2
 dan |𝑥𝑛 − 𝐿| <

𝜀

2
 

Perhatikan bahwa |𝑥𝑚 − 𝑥𝑛| = |𝑥𝑚 − 𝐿 + 𝐿 − 𝑥𝑛| ≤ |𝑥𝑚 − 𝐿| + |𝐿 − 𝑥𝑛| <
𝜀

2
+
𝜀

2
= 𝜀. 

(⇐) Misalkan (𝑥𝑘) barisan konvergen akan ditunjukan (𝑥𝑘) barisan Cauchy. 

Karena (𝑥𝑘) Cauchy maka (𝑥𝑘) terbatas. Berdasarkan Teorema Bolzano 

weierstrass maka (𝑥𝑘) memiliki sub barisan yang konvergen. Misal (𝑥𝑎) subbarisan 

dari (𝑥𝑘) dan (𝑥𝑎) ⟶ 𝐿 ∈ ℝ. Diambil 
𝜀

2
> 0, ∃ 𝑛1 ∈ ℕ,∋ ∀ 𝑘, 𝑎 ≥  𝑛1 berlaku 

|𝑥𝑘 − 𝑥𝑎| <
𝜀

2
. ∃ 𝑛2 ∈ ℕ, ∋ ∀ 𝑎 ≥  𝑛2 berlaku |𝑥𝑎 − 𝐿| <

𝜀

2
. 

∀𝑘, 𝑎 ≥ max { 𝑛1,  𝑛2} berlaku 

|𝑥𝑘 − 𝐿| = |𝑥𝑘 − 𝑥𝑎 + 𝑥𝑎 − 𝐿| ≤ |𝑥𝑘 − 𝑥𝑎| + |𝑥𝑎 − 𝐿| <
𝜀

2
+
𝜀

2
= 𝜀. 

Jadi terbukti Barisan konvergen jika dan hanya jika barisan Cauchy.   ∎ 

Definisi 2.7 Barisan bilangan real (𝑥𝑘) dikatakan terbatas, jika terdapat bilangan 

real 𝑀 > 0, sehingga |𝑥𝑘| ≤ 𝑀, untuk setiap 𝑘 ∈ ℕ [11]. 

Contoh : Barisan (𝑥𝑘) = (
1

𝑘
)
𝑘=1

∞

 , (𝑥𝑘) terbatas. 

Bukti. |𝑥𝑘| = |
1

𝑘
| ≤ 1 = 𝑀. Jadi terbukti (𝑥𝑘) terbatas.      ∎ 
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3. Ruang Bernorma 

Berikut akan dibahas definisi dari ruang bernorma, barisan konvergen terhadap 

norma, barisan divergen terhadap norma, barisan Cauchy terhadap norma, ruang 

barisan 𝑐0, 𝑐 ,dan 𝑙∞, ruang Banach, dan beberapa teorema. 

Definisi 3.1 Diberikan X ruang vector atas ℝ. Suatu fungsi bernilai real ‖. ‖ pada 

X yang memenuhi [1]: 

i. ‖𝒙‖ ≥ 0 untuk setiap 𝒙 ∈ 𝑋. 

ii. ‖𝒙‖ = 0, jika dan hanya jika 𝒙 = 𝟎 (vektor nol). 

iii. ‖𝛼𝒙‖ = ‖𝛼‖. ‖𝒙‖ untuk setiap skalar 𝛼 ∈ ℝ dan 𝒙 ∈ 𝑋. 

iv. ‖𝒙 + 𝒚‖ ≤ ‖𝒙‖ + ‖𝒚‖ untuk setiap 𝒙, 𝒚 ∈ 𝑋. 

Disebut norma pada X. Pasangan (𝑋, ‖. ‖) disebut ruang bernorma atau ditulis X 

ruang bernorma. 

Contoh : Terdapat pada Teorema 3.5. 

Dalam ruang bernorma, suatu barisan dikatakan konvergen terhadap norma jika 

norma selisih antara elemen-elemen barisan dan limitnya menjadi semakin kecil 

mendekati nol. Berikut merupakan definisi konvergen dan barisan Cauchy terhadap 

norma. 

Definisi 3.2 Diberikan X ruang bernorma dan barisan (𝑥𝑘) di dalam X [1]. 

i. Barisan (𝑥𝑘) dikatakan konvergen ke 𝐿 ∈  𝑋 terhadap norma ‖. ‖ jika 

𝑙𝑖𝑚
𝑘→∞

‖𝑥𝑘 − 𝐿‖ = 0, Yaitu untuk setiap 𝜀 > 0 ada 𝑛0 ∈ ℕ sedemikian sehingga 

untuk setiap 𝑘 > 𝑛0, berlaku ‖𝑥𝑘 − 𝐿‖ < 𝜀. 

ii. Barisan (𝑥𝑘) disebut barisan Cauchy terhadap norma ‖. ‖ jika 

𝑙𝑖𝑚
𝑘,𝑙→∞

‖𝑥𝑘 − 𝑥𝑙‖ = 0, Yaitu untuk setiap 𝜀 > 0, ada 𝑛0 ∈ ℕ sedemikian 

sehingga untuk setiap 𝑘, 𝑙 > 𝑛0, berlaku ‖𝑥𝑘 − 𝑥𝑙‖ < 𝜀. 

Contoh : 

i. Diberikan (𝑥𝑘) = ((2,2,2,… )). Akan ditunjukan 𝑥𝑘 → 2.  

Bukti. Diambil sebarang 𝜀 > 0.  ∃ 𝑛1 ∈ ℕ, ∋ ∀𝑘 ≥ 𝑛1 berlaku  

‖𝑥𝑘 − 2‖ = ‖2 − 2‖ = 0 < 𝜀. Jadi 𝑥𝑘 → 2. 

ii. Diberikan (𝑥𝑘) = ((
1

𝑘
∶ 𝑘 ∈ ℕ)) merupakan barisan Cauchy. 

Bukti. Diambil 𝜀 > 0. Menurut sifat Archimedes, ∃ 𝑛1 ∈ ℕ,∋ ∀ 
1

𝑛0
<
𝜀

2
. Jadi 

∀ 𝑚, 𝑛 > 𝑛0 berlaku ‖𝑥𝑚 − 𝑥𝑛‖ = ‖
1

𝑚
−
1

𝑛
‖ ≤ ‖

1

𝑚
‖+ ‖

1

𝑛
‖ ≤

1

𝑛0
+

1

𝑛0
<
𝜀

2
+
𝜀

2
= 𝜀. 

Jadi 𝑥𝑘merupakan barisan Cauchy.         ∎ 
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Definisi 3.3 Diberikan (𝑋, ‖. ‖) ruang bernorma. Ruang X dikatakan lengkap 

terhadap norma ‖. ‖ jika untuk setiap barisan Cauchy di X merupakan barisan 

konvergen di X. Ruang bernorma yang lengkap disebut ruang Banach [1].  

Contoh : Terdapat pada Teorema 3.6. 

 Selanjutnya akan dibahas untuk definisi dari barisan 𝑙∞, 𝑐, dan 𝑐0. Lebih lanjut 

akan dibuktikan terhadap ruang bernorma dan ruang Banach sebagai berikut. 

Definisi 3.4 Diberikan himpunan bilangan real ℝ dan 𝜔(ℝ) = {𝑥 = (𝑥1, 𝑥2, … ) ∶

𝑥𝑘 ∈ ℝ,∀ 𝑘 ∈ ℕ}.  N. L. Carothers [2] mendefinisikan  

Dengan normanya, ‖𝑥‖ = sup𝑘|𝑥𝑘|, ∀ 𝑘 ∈ ℕ. 

Teorema 3.5 Ruang 𝑙∞, 𝑐 ,dan 𝑐0 merupakan ruang bernorma. 

Bukti. 

1. Akan ditunjukan ruang barisan 𝑙∞ merupakan ruang bernorma.  

Diambil sebarang 𝛼 ∈  ℝ dan 𝑥, 𝑦 ∈ 𝑙∞, ∀ 𝑘 ∈ ℕ berlaku 

a. Karena 0 ≤ |𝑥𝑘| maka 0 ≤ |𝑥𝑘| ≤ sup𝑘|𝑥𝑘| = ‖𝑥‖.  

b. ‖𝑥‖ = 0 ⟺ 𝑥 = 𝟎 (vektor nol). 

(⟹) Karena ‖𝑥‖ = supk|𝑥𝑘| = 0, maka |𝑥𝑘| = 𝟎, jadi 𝑥 = (𝑥𝑘) = 𝟎. 

(⟸) Karena 𝑥 = (0,0,0,… ) maka  |𝑥𝑘| = 𝟎, jadi ‖𝑥‖ = sup𝑘|𝑥𝑘| = 0. 

c. ‖𝛼𝑥‖ = sup𝑘|𝛼𝑥𝑘| = sup𝑘|𝛼||𝑥𝑘| = |𝛼| sup𝑘|𝑥𝑘| = ‖𝛼‖ ‖𝑥‖. 

d. Berdasarkan 1.5 Sifat supremum diperoleh 

‖𝑥 + 𝑦‖ = sup𝑘|𝑥𝑘 + 𝑦𝑘| ≤ sup𝑘|𝑥𝑘| + sup𝑘|𝑦𝑘| = ‖𝑥‖ + ‖𝑦‖. 

Jadi terbukti (𝑙∞, ‖. ‖𝑙∞) adalah ruang bernorma. 

2. Akan ditunjukan ruang barisan 𝑐 merupakan ruang bernorma.  

Diambil sebarang 𝛼 ∈  ℝ dan 𝑥, 𝑦 ∈ 𝑐, ∀ 𝑘 ∈ ℕ berlaku : 

a. Karena 0 ≤ |𝑥𝑘| maka 0 ≤ |𝑥𝑘| ≤ sup𝑘|𝑥𝑘| = ‖𝑥‖.  

b. ‖𝑥‖ = 0 ⟺ 𝑥 = 𝟎 (vektor nol). 

(⟹) Karena ‖𝑥‖ = supk|𝑥𝑘| = 0, maka |𝑥𝑘| = 𝟎, jadi 𝑥 = (𝑥𝑘) = 𝟎. 

(⟸) Karena 𝑥 = (0,0,0,… ) maka  |𝑥𝑘| = 𝟎, jadi ‖𝑥‖ = sup𝑘|𝑥𝑘| = 0. 

c. ‖𝛼𝑥‖ = sup𝑘|𝛼𝑥𝑘| = sup𝑘|𝛼||𝑥𝑘| = |𝛼| sup𝑘|𝑥𝑘| = ‖𝛼‖ ‖𝑥‖. 

d. Berdasarkan 1.5 Sifat supremum diperoleh 

‖𝑥 + 𝑦‖ = sup𝑘|𝑥𝑘 + 𝑦𝑘| ≤ sup𝑘|𝑥𝑘| + sup𝑘|𝑦𝑘| = ‖𝑥‖ + ‖𝑦‖. 

Jadi terbukti (𝑐, ‖. ‖𝑐) adalah ruang bernorma. 

3. Akan ditunjukan ruang barisan 𝑐0 merupakan ruang bernorma.  

 𝑙∞ = {𝑥 = (𝑥𝑘) ∈ 𝜔(ℝ): sup𝑘|𝑥𝑘| < ∞}  

 𝑐  = {𝑥 = (𝑥𝑘) ∈ 𝜔(ℝ): (𝑥𝑘) 𝑘𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛}  

 𝑐0 = {𝑥 = (𝑥𝑘) ∈ 𝜔(ℝ): (𝑥𝑘) 𝑘𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛 𝑘𝑒 0}  



11 

 

Diambil sebarang 𝛼 ∈  ℝ dan 𝑥, 𝑦 ∈ 𝑐0, ∀ 𝑘 ∈ ℕ berlaku: 

a. Karena 0 ≤ |𝑥𝑘| maka 0 ≤ |𝑥𝑘| ≤ sup𝑘|𝑥𝑘| = ‖𝑥‖.  

b. ‖𝑥‖ = 0 ⟺ 𝑥 = 𝟎 (vektor nol). 

(⟹) Karena ‖𝑥‖ = supk|𝑥𝑘| = 0, maka |𝑥𝑘| = 𝟎, jadi 𝑥 = (𝑥𝑘) = 𝟎. 

(⟸) Karena 𝑥 = (0,0,0,… ) maka  |𝑥𝑘| = 𝟎, jadi ‖𝑥‖ = sup𝑘|𝑥𝑘| = 0. 

c. ‖𝛼𝑥‖ = sup𝑘|𝛼𝑥𝑘| = sup𝑘|𝛼||𝑥𝑘| = |𝛼| sup𝑘|𝑥𝑘| = ‖𝛼‖ ‖𝑥‖. 

d. Berdasarkan 1.5 Sifat supremum diperoleh 

‖𝑥 + 𝑦‖ = sup𝑘|𝑥𝑘 + 𝑦𝑘| ≤ sup𝑘|𝑥𝑘| + sup𝑘|𝑦𝑘| = ‖𝑥‖ + ‖𝑦‖. 

Jadi terbukti (𝑐0, ‖. ‖𝑐0) adalah ruang bernorma.       

               ∎ 

Teorema 3.6 Ruang (𝐴, ‖. ‖𝐴), dengan 𝐴 = 𝑙∞, 𝑐, 𝑐0 merupakan ruang Banach. 

Bukti. 

1. Akan ditunjukan (𝑙∞, ‖. ‖𝑙∞) merupakan ruang Banach. 

Diambil sebarang 𝜀 > 0 dan (𝑥𝑘
𝑠) = (𝑥1

𝑠, 𝑥2
𝑠 , 𝑥3

𝑠, … ) barisan Cauchy di dalam 

𝑙∞, maka ∃ 𝑛1 ∈ ℕ,∋ ∀ 𝑠, 𝑡 ≥ 𝑛1 dan  𝑘 ∈ ℕ berlaku 

‖𝑥𝑠 − 𝑥𝑡‖𝑙∞ < 𝜀 ⇒ sup𝑘|𝑥𝑘
𝑠 − 𝑥𝑘

𝑡 | < 𝜀 ⟹ |𝑥𝑘
𝑠 − 𝑥𝑘

𝑡 | < 𝜀.     (1.1) 

Diperoleh (𝑥𝑘
𝑠)𝑠=1
∞ , ∀ 𝑘 ∈ ℕ  merupakan barisan Cauchy di ℝ. Berdasarkan 

Teorema 2.6 diperoleh (𝑥𝑘
𝑠)𝑠=1
∞  konvergen, misal ke 𝑥𝑘 ∈  ℝ, ∀ 𝑘 ∈ ℕ.  

Dengan kata lain, lim
𝑠→∞

𝑥𝑘
𝑠 = 𝑥𝑘 , ∀ 𝑘 ∈ ℕ.         (1.2) 

 Dibentuk 𝑥 = (𝑥𝑘), ∀ 𝑘 ∈ ℕ. Akan ditunjukan bahwa 𝑥 ∈ 𝑙∞. Karena 

(𝑥𝑘
𝑠) ∈ 𝑙∞ maka sup𝑘|𝑥𝑘

𝑠| ≤ 𝑀. ∋  ∀ 𝑠 ≥ 𝑛1 dan 𝑘 ∈ ℕ berlaku  

|𝑥𝑘| ≤ sup𝑘|𝑥𝑘 − 𝑥𝑘
𝑠 + 𝑥𝑘

𝑠| ≤ sup𝑘|𝑥𝑘 − 𝑥𝑘
𝑠| + sup𝑘|𝑥𝑘

𝑠| < 𝜀 + 𝑀 < ∞. 

Jadi 𝑥 ∈ 𝑙∞. Berdasarkan persamaan (1.1) dan (1.2), ∀𝑠 ≥ 𝑛1 berlaku  

 ‖𝑥𝑠 − 𝑥‖𝑙∞ = sup𝑘|𝑥𝑘
𝑠 − 𝑥𝑘| = supk |𝑥𝑘

𝑠 − lim
𝑠→∞

𝑥𝑘
𝑠| = lim

𝑠→∞
 sup𝑘|𝑥𝑘

𝑠 − 𝑥𝑘
𝑠| < 𝜀. 

Dengan demikian, 𝑙∞ ruang Banach terhadap norma ‖. ‖𝑙∞ . 

2. Akan ditunjukan (𝑐, ‖. ‖𝑐) merupakan ruang Banach. 

Diambil sebarang 𝜀 > 0 dan (𝑥𝑘
𝑠) = (𝑥1

𝑠, 𝑥2
𝑠, 𝑥3

𝑠, … ) barisan Cauchy di dalam 𝑐, 

maka ∃ 𝑛1 ∈ ℕ, ∋ ∀ 𝑠, 𝑡 ≥ 𝑛1 dan  𝑘 ∈ ℕ berlaku 

‖𝑥𝑠 − 𝑥𝑡‖𝑐 < 𝜀 ⇒ sup𝑘|𝑥𝑘
𝑠 − 𝑥𝑘

𝑡 | < 𝜀 ⟹ |𝑥𝑘
𝑠 − 𝑥𝑘

𝑡 | < 𝜀.     (1.3) 

Diperoleh (𝑥𝑘
𝑠)𝑠=1
∞ , ∀ 𝑘 ∈ ℕ  merupakan barisan Cauchy di ℝ. Berdasarkan 

Teorema 2.6 diperoleh (𝑥𝑘
𝑠)𝑠=1
∞  konvergen, misal ke 𝑥𝑘 ∈  ℝ, ∀ 𝑘 ∈ ℕ. 

Diberikan 𝜀 > 0, ∃ 𝑛 ∈ ℕ, ∋ ∀ 𝑠 ≥ 𝑛 dan 𝑘 ∈ ℕ berlaku |𝑥𝑘
𝑠 − 𝑥𝑘| <

𝜀

3
.  (1.4) 

Dibentuk 𝑥 = (𝑥𝑘), ∀ 𝑘 ∈ ℕ. Akan ditunjukan bahwa 𝑥 ∈ 𝑐. Ketika 𝑥𝑠 (baris 

ke 𝑠 dari 𝑥) adalah barisan Cauchy, ∃ 𝑀 ∋ 𝑘, 𝑙 ≥ 𝑀 berlaku |𝑥𝑘
𝑠 − 𝑥𝑙

𝑠| <
𝜀

3
. 

∀𝑠 ≥ 𝑛 dan 𝑘, 𝑙 ≥ 𝑀, berlaku |𝑥𝑘 − 𝑥𝑙| ≤ |𝑥𝑘 − 𝑥𝑘
𝑠| + |𝑥𝑘

𝑠 − 𝑥𝑙
𝑠| + |𝑥𝑙

𝑠 − 𝑥𝑙| < 𝜀. 
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Diperoleh (𝑥𝑘), ∀ 𝑘 ∈ ℕ merupakan barisan Cauchy, Berdasarkan Teorema 

2.6 diperoleh (𝑥𝑘), ∀ 𝑘 ∈ ℕ konvergen, jadi 𝑥 ∈ 𝑐. Berdasarkan persamaan 

(1.4), ∀ 𝑠 > 𝑛 berlaku ‖𝑥𝑠 − 𝑥‖𝑐 = sup𝑘|𝑥𝑘
𝑠 − 𝑥𝑘| ≤

𝜀

3
< 𝜀. 

Dengan demikian, 𝑐 ruang Banach terhadap norma ‖. ‖𝑐 . 

3. Akan ditunjukan (𝑐0, ‖. ‖𝑐0) merupakan ruang Banach. 

Diambil sebarang 𝜀 > 0 dan (𝑥𝑘
𝑠) = (𝑥1

𝑠, 𝑥2
𝑠 , 𝑥3

𝑠, … ) barisan Cauchy di dalam 

𝑐0, maka ∃ 𝑛1 ∈ ℕ,∋ ∀ 𝑠, 𝑡 > 𝑛1 dan  𝑘 ∈ ℕ berlaku 

‖𝑥𝑠 − 𝑥𝑡‖𝑐0 < 𝜀 ⇒ sup𝑘|𝑥𝑘
𝑠 − 𝑥𝑘

𝑡 | < 𝜀 ⟹ |𝑥𝑘
𝑠 − 𝑥𝑘

𝑡 | < 𝜀.     (1.5) 

Diperoleh (𝑥𝑘
𝑠)𝑠=1
∞ , ∀ 𝑘 ∈ ℕ  merupakan barisan Cauchy di ℝ. Berdasarkan 

Teorema 2.6 diperoleh (𝑥𝑘
𝑠)𝑠=1
∞  konvergen, misal ke 𝑥𝑘 ∈  ℝ, ∀ 𝑘 ∈ ℕ. Untuk 

setiap 𝜀 > 0, ∃ 𝑛 ∈ ℕ,∋ ∀ 𝑠 > 𝑛 dan 𝑘 ∈ ℕ berlaku |𝑥𝑘
𝑠 − 𝑥𝑘| <

𝜀

3
.   (1.6) 

Dibentuk 𝑥 = (𝑥𝑘), ∀ 𝑘 ∈ ℕ. Akan ditunjukan bahwa 𝑥 ∈ 𝑐0. Ketika 𝑥𝑠 (baris 

ke 𝑠 dari 𝑥) adalah barisan Cauchy, ∃ 𝑀 ∋ 𝑘, 𝑙 ≥ 𝑀 berlaku |𝑥𝑘
𝑠 − 𝑥𝑙

𝑠| <
𝜀

3
. 

∀𝑠 ≥ 𝑛 dan 𝑘, 𝑙 ≥ 𝑀, berlaku |𝑥𝑘 − 𝑥𝑙| ≤ |𝑥𝑘 − 𝑥𝑘
𝑠| + |𝑥𝑘

𝑠 − 𝑥𝑙
𝑠| + |𝑥𝑙

𝑠 − 𝑥𝑙| < 𝜀. 

Diperoleh (𝑥𝑘), ∀ 𝑘 ∈ ℕ merupakan barisan Cauchy, berdasarkan Teorema 2.6 

diperoleh (𝑥𝑘), ∀ 𝑘 ∈ ℕ konvergen, jadi 𝑥 ∈ 𝑐0. Berdasarkan persamaan (1.6), 

∀ 𝑠 > 𝑛 berlaku ‖𝑥𝑠 − 𝑥‖𝑐0 = sup𝑘|𝑥𝑘
𝑠 − 𝑥𝑘| ≤

𝜀

3
< 𝜀. 

Dengan demikian, 𝑐0 ruang Banach terhadap norma ‖. ‖𝑐0.    

               

               ∎ 

Teorema 3.7 Ruang 𝑐0 ⊂ 𝑐 ⊂ 𝑙∞. 

Bukti. Untuk 𝑐0 ⊂ 𝑐. Diambil sebarang 𝑥 = (𝑥𝑘) ∈ 𝑐0 maka (𝑥𝑘) → 0.  Dengan 

demikian (𝑥𝑘) konvergen sehingga  𝑥 = (𝑥𝑘) ∈ 𝑐. Dengan kata lain 𝑐0 ⊂ 𝑐.  

 Akan ditunjukan 𝑐 ⊂ 𝑙∞. Diambil 𝑥 = (𝑥𝑘) ∈ 𝑐, dimisalkan (𝑥𝑘) → 𝑎 ∈  ℝ. 

Dipilih 𝜀 = 1 maka ∃ 𝑛0(1) ∈ ℕ, ∋ ∀𝑘 ≥ 𝑛0 berlaku |𝑥𝑘 − 𝑎| < 1. Berdasarkan 

teorema 1.6, ∀ 𝑘 ≥ 𝑛0 berlaku |𝑥𝑘| = |𝑥𝑘 − 𝑎 + 𝑎| ≤ |𝑥𝑘 − 𝑎| + |𝑎| < 1 + |𝑎|.  

Diambil 𝑀 = sup{|𝑥1|, |𝑥2|, … , |𝑥𝑛0−1|, |𝑎| + 1}. Diperoleh |𝑥𝑘| ≤ 𝑀, ∀  𝑘 ∈

ℕ berlaku sup𝑘|𝑥𝑘| ≤ 𝑀 < ∞. Jadi 𝑥 = (𝑥𝑘) ∈ 𝑙∞. Dengan demikian 𝑐 ⊂ 𝑙∞ . 

Kebalikan Teorema 3.7 tidak berlaku sebaliknya, berikut ini diberikan contoh 

penyangkalan dari teorema 3.7: 

1. 𝑥 ∈ 𝑐, tapi 𝑥 ∉ 𝑐0. Dipilih 𝑥 = (𝑥𝑘) = ((1)
𝑘), 𝑘 ∈ ℕ. Pada contoh (Definisi 

2.2) terbukti 𝑥𝑘 → 1, sehinga 𝑥 ∈ 𝑐. Karena 𝑥𝑘 → 1 maka 𝑥 ∉ 𝑐0. 

2. 𝑥 ∈ 𝑙∞, tetapi 𝑥 ∉ 𝑐. Dipilih 𝑥 = (𝑥𝑘) = ((−1)
𝑘), ∀  𝑘 ∈ ℕ. Barisan (𝑥𝑘) ∈ 𝑙∞, 

sebab, supk|𝑥𝑘| = 1 < ∞. Selanjutnya berdasarkan contoh (definisi 2.4) terbukti 

(𝑥𝑘) divergen. Dengan kata lain 𝑥 ∉ 𝑐. 

                 ∎  
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